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Abstract

Hash Distributed A* (HDA¥*) is an efficient parallel best
first algorithm that asynchronously distributes work among
the processes using a global hash function. We investigate
domain-independent methods for automatically creating ef-
fective work distribution functions for HDA*. First, we pro-
pose a new method for generating abstract features for the
recently proposed abstract Zobrist hashing method. Second,
we propose a method for modifying Zobrist hashing such
that selected operators are guaranteed to generate children
that are mapped to the same process as the parent, ensuring
that no communications overhead is incurred for such opera-
tors. Finally, we present an improvement to state-abstraction
based HDA* which dynamically selects the abstraction graph
size based on problem features. We evaluate these new work
distribution methods for a domain-independent planner on a
cluster with 48 cores and show that these methods result in
significantly higher speedups than previous methods.

1 Introduction

The A* algorithm (Hart, Nilsson, and Raphael 1968) is used
in many areas of Al including planning, scheduling, path-
finding, and sequence alignment. Parallelization is one way
to speed up domain-independent planning, and parallel plan-
ners are becoming increasingly more common, as evidenced
by, e.g., the recent IPC-14 Multicore track. In addition, par-
allelization is an effective way to overcome memory limi-
tations — while it may not be possible to optimally solve a
problem due to limited memory on a single machine, the
aggregate memory available in a cluster or cloud environ-
ment can allow problems that can not be optimally solved
using 1 machine to be solved — it has been argued that this is
perhaps more important than obtaining speedup (Fukunaga,
Kishimoto, and Botea 2012). Thus, designing scalable, par-
allel search algorithms that make efficient use of resources
poses an important challenge.

Hash Distributed A* (HDA¥) is a parallel best-first search
algorithm in which each processor executes A* using lo-
cal OPEN/CLOSED lists, and generated nodes are assigned
(sent) to processors according to a global hash function
(Kishimoto, Fukunaga, and Botea 2013). HDA* can be used
in distributed memory systems as well as multi-core, shared
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memory machines, and has been shown to scale up to hun-
dreds of cores with little search overhead.

The performance of HDA* depends on the hash func-
tion used for assigning nodes to processors. Kishimoto et
al. (2009; 2013) showed that using the Zobrist hash func-
tion (1970), HDA* could achieve good load balance and low
search overhead. Burns et al. 2010 noted that Zobrist hash-
ing incurs a heavy communication overhead because many
nodes are assigned to processes that are different from their
parents, and proposed AHDA*, which used an abstraction-
based hash function originally designed for use with PSDD
(Zhou and Hansen 2007) and PBNF (Burns et al. 2010).
Abstraction-based work distribution achieves low commu-
nication overhead, but at the cost of high search overhead.
Abstract Zobrist hashing (AZH) (Jinnai and Fukunaga 2016)
achieves both low search overhead and communication over-
head by incorporating the strengths of both Zobrist hashing
and abstraction. While the Zobrist hash value of a state is
computed by applying an incremental hash function to the
set of features of a state, AZH first applies a feature pro-
jection functions mapping features to abstract features, and
the Zobrist hash value of the abstract features (as opposed to
the raw features) is computed. This results in reduced com-
munication overhead and effective load balance. On the 24-
puzzle, 15-puzzle, and multiple sequence alignment prob-
lem, AZH with hand-crafted, domain-specific feature pro-
jection function was shown to significantly outperform pre-
vious methods on a multicore machine with up to 16 cores.

In addition, (Jinnai and Fukunaga 2016) proposed a
method for automatically generating abstract feature projec-
tion functions for STRIPS planning problems, as a proof
of concept that abstract features could be generated auto-
matically (this paper refers to this method, described be-
low in Section 2.6 as GreedyAFG). While AZHDA* using
GreedyAFG slightly outperforms standard Zobrist hashing,
there is much room for improvement, since there are many
domains where the abstract features found by GreedyAFG
completely fail to reduce communications overhead, and
AZHDA* using GreedyAFG ends up behaving much like
standard ZHDA*.

In this paper, we propose and evaluate three new, domain-
independent methods for automatically generating work dis-
tribution functions. First, we propose fluency-dependent ab-
stract feature generation (FluencyAFG), a new abstract fea-



ture generation method for AZHDA*. FluencyAFG seeks to
filter out poor candidates for feature abstraction according to
the feature’s “fluency”, which indicates how often its value
changes in state space. Second, we propose operator-based
Zobrist hashing, a method for setting the bitstrings used to
compute Zobrist hash values for ensuring that the succes-
sors of some selected state s are assigned the same Zobrist
hash value as s. Third, we propose a small improvement
to AHDA* (Burns et al. 2010) which dynamically adjusts
the abstract graph size based on problem characteristics. We
evaluate these approaches on domain-independent planning
on a cluster of 6 machines with 48 total cores, as well as a
shared-memory multicore machine.

The rest of this paper is structured as follows. First, Sec-
tion 2 reviews HDA*, abstraction, and abstract Zobrist hash-
ing. We then propose fluency-dependent AFG (Section 3),
operator-based Zobrist hashing (Section 4), and dynamic
abstraction-based HDA* (Section 5). Section 6 presents an
experimental evaluation of these methods. Finally, Section 7
concludes with a discussion and directions for future work.

2 Background
2.1 Hash Distributed A*

Hash Distributed A* (HDA*) (Kishimoto, Fukunaga, and
Botea 2013) is a parallel A* algorithm which incorporates
the idea of hash based distribution of PRA* (Evett et al.
1995) and asynchronous communication of TDS (Romein et
al. 1999). In HDA*, each processor has its own OPEN and
CLOSED. There is a global hash function which assigns a
unique owner thread to every search node. Each thread T'
executes the following:

1. For all new nodes n in 7”s message queue, if it is not in
CLOSED (not a duplicate), put n in OPEN.

2. Expand node n with highest priority in OPEN. For every
generated nodes ¢, compute hash value H(c), and send ¢
to the thread that owns H (¢).

2.2 Parallel Overheads in HDA*

Although an ideal parallel best-first search algorithm would
achieve a n-fold speedup on n threads, there are several par-
allel overheads which can prevent HDA* from achieving
perfect linear speedup.

Communication Overhead (CO): We define communica-
tion overhead as the ratio of nodes transferred to other

. .__ #nodes sent to other threads : .
threads: CO := # nodes generated - CO is detrimental

to performance because of delays due to message transfers
(e.g., network communications), as well as access to data
structure such as message queues. HDA* incurs communi-
cation overhead when transferring a node from the thread
where it is generated to its owner according to the hash func-
tion. In general, CO increases with the number of threads.

Search Overhead (SO): Parallel search usually expands
more nodes than sequential A*. In this paper we define

o # nodes expanded in parallel _
search overhead as SO := #nodes expanded in sequential search L.

In parallel search, SO can arise due to inefficient
load balance. We define load balance as LB :=

Max # nodes assigned to a thread .
Ave, Fodes assigned o a thread " If load balance is poor, a thread

which is assigned more nodes than others will become a
bottleneck — other threads spend their time expanding less
promising nodes, resulting in search overhead.

There is a fundamental trade-off between CO and SO. In-
creasing the amount of communication can reduce search
overhead at the cost of communication overhead, and vice
versa. The optimal tradeoff depends on the characteris-
tic of the problem domain/instance, as well as the hard-
ware/system on which HDA* is executed.

2.3 Zobrist Hashing and ZHDA*

Since the work distribution in HDA* is solely dependent on
a global hash, the choice of the hash function is crucial to
its performance. Kishimoto et al. (2013) used Zobrist hash-
ing (1970), which is widely used in 2-player games such as
chess. Figure 1a illustrates Zobrist hashing on the 8 Puzzle.
The Zobrist hash value of a state s, Z(s), is calculated as
follows. For simplicity, assume that s is represented as an
array of n propositions, s = (zg, 1, ..., ). Let R be a ta-
ble containing preinitialized random bit strings.

Z(S) = R[l‘o] xor R[xl] xor ---
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Figure 1: Comparison of calculation of Zobrist hash Z(s) and ab-
stract Zobrist hash (AZH) value AZ(s) for the 8-puzzle: State s is
represented as s = (t1,t2,...,ts), where t; = 1,2, ..., 9. The hash
value of s is the result of xor’ing a preinitialized random bit vec-
tor R[t;] for each feature (tile) t;. AZH incorporates an additional
step which projects features to abstract features (for each feature
t;, look up R[A(t;)] instead of R[t;]).

Zobrist hashing seeks to distribute nodes uniformly
among all threads, without any consideration of the neigh-



borhood structure of the search space graph. As a con-
sequence, communication overhead is high. Assume an
ideal implementation that assigns nodes uniformly among
threads. Every generated node is sent to another threads with
probability 1 — m. Therefore, with 16 threads, > 90%
of the nodes are sent to other threads, so communication
costs are incurred for the vast majority of node generations.

It was shown that CO of HDA* with Zobrist hashing
(ZHDA*) increases to 92% when running on 16 threads on
the 24-puzzle (Jinnai and Fukunaga 2016). Thus, efficiency
of ZHDA* decreases as the # of threads increases.

2.4 Abstraction and AHDA#*

In order to minimize communication overhead in HDA*,
Burns et al (2010) proposed AHDA*, which uses abstrac-
tion based node assignment. AHDA* applies the state space
partitioning technique used in PBNF (Burns et al. 2010),
which in turn is based on Parallel Structured Duplicate
Detection (PSDD) (Zhou and Hansen 2007). Abstraction
projects nodes in the state space into abstract states, and
abstract states are assigned to processors using a modulus
operator. Thus, nodes that are projected to the same abstract
state are assigned to the same thread. If the abstraction func-
tion is defined so that children of node n are usually in the
same abstract state as n, then communication overhead is
minimized. The drawback of this method is that it focuses
solely on minimizing communication overhead, and there is
no mechanism for equalizing load balance, which can lead to
high search overhead. Abstraction is generally constructed
by ignoring subset of features. It has been shown that ab-
straction has roughly 2-4 times higher search overhead com-
pared to Zobrist hashing on the 24-puzzle (Jinnai and Fuku-
naga 2016).

2.5 Abstract Zobrist Hashing and AZHDA*

Abstract Zobrist hashing (AZH) (Jinnai and Fukunaga 2016)
is a hybrid hashing strategy which incorporates the strengths
of both Zobrist hashing and abstraction. AZH augments the
Zobrist hashing framework with the idea of projection from
abstraction. The AZH value of a state, AZ(s) is:

AZ(s) := R[A(xo)] zor R[A(z1)] mor - xor R[A(x,)]

where A is a feature projection function which is a many-
to-one mapping from each raw feature to an abstract feature,
and R is a precomputed table defined for each abstract fea-
ture.

Thus, AZH is a 2-level, hierarchical hash, where raw
features are first projected to abstract features, and Zobrist
hashing is applied to the these abstract features. Figure 1 il-
lustrates the computation of AZH for the 8-puzzle.

AZH seeks to combine the advantages of both abstraction
and Zobrist hashing. Communication overhead is minimized
by building abstract features that share the same hash value
(abstract features are analogous to how abstraction projects
states to abstract states), and load balance is achieved by ap-
plying Zobrist hashing to the abstract features of each state.

Compared to Zobrist hashing, AZH incurs less communi-
cation overhead due to abstract feature-based hashing. While

Zobrist hashing assigns a hash value for each node indepen-
dently, AZH assigns the same hash value for all nodes which
shares the same abstract features for all features, reducing
the number of node transfers.

In contrast to abstraction-based node assignment, which
minimizes communications but does not optimize load bal-
ance and search overhead, AZH also seeks good load bal-
ance, because the node assignment takes into account all
features in the state, rather than a subset of features.

2.6 Automatic Generation of Feature Projection
Functions

The feature projection function plays a critical role in deter-
mining the performance of AZH, because AZH relies on the
feature projection in order to reduce communications over-
head. The previous work on AZH focused on hand-crafted
feature projection functions. In this section we investigate
domain-independent methods for completely automatically
constructing a feature projection function. We first review
GreedyAFG, a method which was proposed in (Jinnai and
Fukunaga 2016), and then propose a new method that ad-
dress the weakness of GreedyAFG.

A state in STRIPS planning is a set of propositions, and
the obvious way to implement Zobrist hashing is to use
STRIPS propositional variables directly as features. In the
case of a planner which internally uses a SAS+ representa-
tion, these features can be trivially recovered from the SAS+
variable assignment. For example, if some variable A has a
value of v, the propositional variable is(A,v) is true, and
is(A,v) is false if A # wv. This implementation of Zo-
brist hashing was used in (Kishimoto, Fukunaga, and Botea
2013), as well as our implementation of ZHDA*. Thus, be-
low, the raw features used for STRIPS planning are these
propositional features, and the abstract features correspond
to groups of propositional features.

Greedy Abstract Feature Generation and GAZHDA%*
Greedy abstract feature generation (GreedyAFG) is a
simple, domain-independent abstract feature generation
method, which partitions each feature into two abstract fea-
tures (Jinnai and Fukunaga 2016). We first find atom groups,
which are often used for constructing PDBs (Edelkamp
2001). An atom group is a set of mutually exclusive proposi-
tions which exactly one will be true for each reachable state,
e.g., the values of a SAS+ multi-valued variable (Bickstrom
and Nebel 1995). We used SAS+ variable values as atom
groups. Each atom group G is partitioned into 2 abstract
features S; and S5, based on the atom group’s undirected
transition graph (nodes are propositions, edges are transi-
tions), as follows: (1) assign the minimal degree node to S1;
(2) greedily add to S; the unassigned node which shares the
most edges with nodes in Sy; (3) while |:S1| < |G|/2 repeat
step (2); (4) assign all unassigned nodes to Ss.

Abstract Zobrist hashing using abstract features generated
by GreedyAFG has been shown to perform slightly better
than standard Zobrist hashing (Jinnai and Fukunaga 2016).
Figure 2a shows an example of the abstract features built by
GreedyAFG for a grid problem.



\ ZAN /)

(a) Abstract Zobrist hashing (b) Operator-based Zobrist
hashing

Figure 2: Comparison of abstract Zobrist hashing vs. operator-
based Zobrist hashing in a grid domain. Each node in the graph
corresponds to a variable representing “a location of the robot”.
GreedyAFG builds abstract feature by dividing the graph into two
abstract features. In contrast, operator-based Zobrist hashing, tries
to assign hash values so that key actions does not incur CO.

3 Fluency-Dependent Abstract Feature
Generation (FAZHDA*)

AZHDA¥* using the abstract features found by GreedyAFG
fails to reduce CO when there are variables whose values
are frequently changed by actions. Consider the standard
blocks domain. Figure 3 shows the transition graph for this
domain. The SAS+ variable vy represents the state of the
robot hand, so the possible values are handempty and not-
handempty. The atom group (mutex group) handempty and
not-handempty will be partitioned into two singleton sets by
GreedyAFG, resulting in two abstract features, one repre-
senting handempty and another representing not-handempty,
and these two abstract features are assigned different hash
values. However, in blocksworld, all actions ( pick-up, put-
down, stack, unstack) change the value of vy from han-
dempty to not-handempty, or vice versa (equivalently, in
a propositional representation, the ishandempty proposition
changes is flipped by every single action). This means that
for every state s in the search space, if s has the abstract fea-
ture for handempty, all the successor states of s will not have
the handempty abstract feature and have the not-handempty
abstract feature instead, and if s has the not-handempty ab-
stract feature, than all successors of s will have the han-
dempty abstract feature. This makes it highly likely that for
every child ¢, AZH(c) # AZH(s), which in turn means
that the children will be assigned to different nodes than
s, resulting in high communications overhead, i.e, in do-
mains with such variables, the behavior of AZHDA* us-
ing GreedyAFG will resemble HDA* using standard Zobrist
Hash. For example, Table 1 shows that GreedyAFG does not
reduce CO compared to Zobrist hashing does not reduce CO
at all on blocks.

To overcome this issue, we present a new feature pro-
jection function, fluency-dependent abstract feature gener-
ation (FluencyAFG), which is based on the notion of a vari-
able’s fluency. We define the fluency of a variable to be the
number of ground actions which change the value of the
variable divided by the total number of ground actions in

the problem. Therefore fluency(v) € [0, 1], and the larger
fluency(v) is, the more frequently the value of v changes.
For example, fluency(vp) in the blocksworld example is
1.0. Variables with high fluency are common in a wide range
of domains. For example, in domains modelling an agent
which moves around in an environment (e.g. robot domains,
logistics related domains), where the multivalued variable
that represent the agent’s location. In such domains, vari-
ables which represent the state (including location) of the
agent frequently changes whereas the variables of environ-
ment seldom changes. In this case, ignoring agent-related
(high-fluency) variables and only taking environment (low-
fluency) variables into account is an effective way to builds
up efficient abstract features for AZH.

FluencyAFG implements this policy, by applying a fil-
ter based on fluency. We experimented with various specific
fluency-based filtering criterion. The current implementa-
tion of FluencyAFG first computes fluency(v) for all val-
ues, and ignores variables whose fluency is in the top 30% of
the variables. Then, GreedyAFG is applied to the remaining
variables. As shown in Section 6, FluencyAFG using this
filtering criterion is quite successful in reducing CO and in-
creasing speedup compared to GreedyAFG.

While FluencyAFG is similar to the construction of Struc-
tured Duplicated Detection (SDD) (Zhou and Hansen 2006;
2007), in the sense that both methods generate atom groups
for a factored representation of abstract states, there are
two significant differences between FluencyAFG and SDD.
First, FluencyAFG (or AZH in general) uses abstract fea-
tures to generate abstract states while SDD uses raw fea-
tures. Second, FluencyAFG applies fluency-based filtering
criteria to choose atom groups to include in the abstract state,
while SDD tries to minimize bounded outdegree of the ab-
stract state space graph.
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not H :
handempty ontable (a) ontable (b)

Vo fluency = 1.0 V1 fluency =0.5 V2 fluency = 0.5

Figure 3: Greedy abstract feature generation (GreedyAFG) ap-
plied to blocksworld domain. The hash value for a state s is
given by H(vo) xor H(vi) xor H(v2). Grey squares are ab-
stract features generated by GreedyAFG, so all propositions in
the same square have same hash value (e.g. H(holding(a)) =
H (ontable(a))). fluency(vo) = 1.0 since all actions in blocks
world domain change its value. In this case, any abstract features
based on the other variables are rendered useless, as all actions
change vo and thus change hash value for the state. In this example,
Fluency-dependent AFG will filter vg before calling Greedy AFG to
compute abstract features based on the remaining variables.



4 Operator-Based Zobrist Hashing
(OZHDA¥)

Although FluencyAFG significantly improves upon
GreedyAFG by avoiding creating abstract features for some
variables that high fluency as explained above, the basic
idea behind FluencyAFG is to avoid creating harmful ab-
stract features that induce large communications overheads.
While successful, avoiding harmful abstract features does
not address the problem of creating useful abstract features
that minimize overhead. In AZHDA®*, communications
overhead is minimized during search state generation when
a generated state s is hashed to the same thread as its parent
p, which requires that all features of s belong to the same
abstract features as the corresponding features of p. If
even one variable (feature) in n is projected to a different
abstract feature than the corresponding feature in p, the
hash value of p will almost certainly be different than that
of n, and states with different hash values are likely to be
assigned to different threads, resulting in search overhead.'
A fundamental challenge with Abstract Zobrist hashing is
the difficulty of evaluating the utility of an abstract feature.
FluencyAFG sidesteps this issue by analyzing the raw
feature and eliminating features that could lead bad abstract
features.

In contrast, Operator-based Zobrist hashing (OZH) ex-
plicitly seeks to construct hash functions that minimize com-
munications overhead. This is possible by focusing on ac-
tions rather than features, and directly generating Zobrist
hash bitstrings in such a way that make it more likely that
children of state s have the same hash value as s. Assume
that all add effects and delete effects of action a are applied
to state s in order to generate state s’. Then,

H(s") = H(s) zor H(a) )
where H(s), H(s') are Zobrist hash values of state s,
s, and H(a) is a Zobrist hash value of action a, which
is computed by xor’ing all hash values of propositions
in its add and delete effects. For example, action put-
down(b) in blocksworld has add effects {clear(b), handempty,
ontable(b)} and delete effect {holding(b)}. Therefore H(a)
= H(clear(b)) xor H(handempty) xzor H(ontable(b))
zor H(holding(b)). From equation 2, if H(a) = 0 then
H(s") = H(s). By assigning hash values to propositions so
that H(a) = 0, the successors of s will have the same hash
value as s whenever action a is applied, so communications
overhead is never incurred by applying action a.

Algorithm 1 shows OZH. Recall that Zobrist hashing uses
an array of bitstrings, R, where R[p] is a random bit string
for each proposition p (Equation 1). First, OZH initializes
the array of bitstrings R with random values (if we stopped
at this point and simply used R, this would be standard Zo-
brist hashing). For each action a, OZH tries to build a ab-
stract feature by rewriting the values in the R so that H(a)

'In HDA* the owner of a state is computed as thread(s) = hash-
value(s) mod numthreads , so it is possible that states with different
hash values are assigned to the same thread. Also, while extremely
unlikely, it is theoretically possible that s and p may have the same
hash value even if they have different abstract features due to the
randomized nature of Zobrist hashing.

B N
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H(a) = 0000 H(s)
= H(s) xor H(a)
=1011
(=H(s))
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Figure 4: Operator-based Zobrist hashing (OZH): The Zobrist
hash value H(s’) can be calculated by incrementally xor’ing the
hash value of its parent state H(s) and the hash value of the ac-
tion a. If H(a) = 0, then H(s) = H(s'), thus no communication
overhead is incurred when executing action a. OZH seeks to set the
bitstrings R[p] used in Equation 1 such that H(a) = 0.

becomes 0. Values are only revised if flag[p] = false, in-
dicating that it has not yet been processed by OZH. If it suc-
ceeds in setting H (a) = 0, then set flag[p] for all its effect
propositions so that the abstract feature would not be dis-
rupted by later iterations.

The order in which Algorithm 1 iterates through the ac-
tions can influence the performance of OZH. Based on pre-
liminary experiments to tune the action ordering, we attempt
to process actions with fewer preconditions first, based on
the assumption that edges representing actions with fewer
preconditions appears more often in the search graph. Im-
proved action orderings is a direction for future work.

Algorithm 1 Operator-based Zobrist hashing (OZH)

let P be the set of all propositions (features)
R[plis initialized as a random bitstringVp € P
let flags|p] < false,¥p € P
for a in Actions do
effects < a.adds U a.deletes
for p in effects do
if flags[p] = false then
h<+0
for p’ in effects \ p do
h < h zor R[p/]
end for
Rlp] + h
for p in effects do
flags|p] < true
end for
break
end if
end for
end for

5 Dynamic AHDA* (DAHDA¥)

This section presents an improvement to AHDA* (Burns et
al. 2010), which is based on the abstraction strategy origi-
nally used in PSDD (Zhou and Hansen 2007). In our exper-



iments, we used AHDA* as one of the baselines for evaluat-
ing our new AZHDA* strategies. The baseline implementa-
tion of AHDA* is based on the greedy abstraction algorithm
described in (Zhou and Hansen 2006), and selects a sub-
set of atom groups. The greedy abstraction algorithm adds
one atom group to the abstract graph at a time, choosing the
atom group which minimizes the maximum out-degree of
the abstract graph, until the graph size (# of nodes) reaches
the threshold given by a parameter N,,,,. PSDD requires
a N,,qz to be derived from the size of the available RAM.
We found that AHDA* with a static N,,,, threshold as in
PSDD performed poorly for a benchmark set with varying
difficulty because a fixed size abstract graph results in very
poor load balance. While poor load balance can lead to low
efficiency and poor performance, a bad choice for N,
can be catastrophic when the system has a relatively small
amount of RAM per core, as poor load balance causes con-
centrated memory usage in the overloaded processors, re-
sulting in early memory exhaustion (i.e., AHDA* crashes
because a thread/process which is allocated a large num-
ber of states exhausts its local heap). The AHDA* results
in Table 1 are for a 48-core cluster, 2GB/core, and uses
Nyae = 10000 nodes (we tried 102, 103,10%, 10°, 10%) and
chose 10000 because it performed best). Note that AHDA*
fails on Blocks10-2 and Gripper8 due to memory exhaus-
tion issue caused by extremely poor load balance. In our
preliminary experiment, all other values of N,,,, also re-
sult in failure on at least 1 problem). Although the total
amount of RAM in current systems is growing, the amount
of RAM per core has remained relatively small because the
number of cores has also been increasing (and is expected
to continue increasing). Thus, this is a significant issue with
the straightforward implementation of AHDA* which uses
a static NV,,qz-

To avoid this problem, N,,,, must be set dynamically ac-
cording to the size of the state space for each instance. Thus,
we implemented Dynamic AHDA* (DAHDA*), which dy-
namically set the size of the abstract graph according to the
number of atom groups (the state space size is exponential
in the # of atom groups). We set the threshold of the total
number of features in the atom groups to be 30% of the total
number of features in the problem instance (we tested 10%,
30%, 50%, and 70% and found that 30% performed best).
Note that the threshold is relative to the number of features,
not the state space size as in AHDA*, which is exponential
in the # features. Therefore, DAHDA* tries to take into ac-
count of certain amount of features, whereas AHDA*/base
sometimes use only a fraction of features.

6 Experiments

We evaluated the performance of the following HDA* vari-

ants on domain-independent planning.

o FAZHDA* : AZHDA* using Fluency-dependent abstract
feature generation (Sec. 3)

o OZHDA*: HDA* with Operator-based Zobrist hashing
(Sec. 4)

o DAHDA*: HDA* using abstraction based work distribu-
tion with dynamic threshold (Sec. 5)

e AHDA*/base (Burns et al. 2010): HDA* using abstrac-
tion based work distribution — baseline implementation
with fixed V,,., threshold of 10000 nodes (chosen be-
cause it was best among 102,102, 10%, 10°, 105 nodes)

e GAZHDA¥* (Jinnai and Fukunaga 2016): AZHDA* using
greedy abstract feature generation (see Sec. 2.6)

e ZHDA*: HDA* using Zobrist hashing (Kishimoto, Fuku-
naga, and Botea 2013)2

We implemented these HDA* variants on Fast Down-
ward (Helmert 2006) (version of February, 2014) using
merge&shrink (LFPA) heuristics (Helmert, Haslum, and
Hoffmann 2007) with the abstraction size set to 1000. We
used the merge&shrink heuristic because of its fast node
generation rate, which makes efficient parallelization chal-
lenging. As benchmark problems, we use classical plan-
ning instances from past IPC benchmarks. We selected the
hardest instances which were solvable by A* with RAM
on a single processor. We implemented inter-process com-
munication using asynchronous buffering communication
(MPI_Bsend and MPI_Iprobe) on MPICH 3 (Gropp et al.
1996). Our code uses Jemalloc memory allocator (Evans
2006). We ran experiments on a cluster with total 48 cores.

We ran our experiments on a cluster of 6 nodes, where
each node has 8 core Intel Xeon E5410 2.33 GHz with 6144
KBshared L2 cache and 16 GB memory. Nodes are intercon-
nected with 1000 Mbps Ethernet. For a cluster, we packed
100 states to reduce the number of messages (Romein et al.
1999). We ran 10 trials for each configuration.

Table 1 shows the speedups (time for 1 processes /
time for 48 processes), communications overhead (CO), and
search overhead (SO). We included the time for initializ-
ing abstract features (FluencyAFG, GreedyAFG), operator-
based bitstring tables (OZHDA¥*), and state abstraction
(DAHDA*, AHDA*), but none of these initializations took
more than 1 second on any of the runs.

We excluded the time for initializing the abstraction table
for the merge&shrink heuristic. Overall, we observed:

e FAZHDA* achieved the highest overall speedup.

e OZHDA* outperformed FAZHDA* in some instances
where FluencyAFG fails to find feature abstractions that
achieve low communications overhead.

e Both of the new ZHDA* variants (FAZHDA* and
OZHDA¥) significantly outperformed the baseline strate-
gies.

2 Although Kishimoto et al (2013) include results for an MPI-
based implementation HDA* using the merge-and-shrink heuristic
on a “commodity cluster” with a very similar CPU, the results are
not directly comparable due to several factors. First their “com-
modity cluster” used 2x1Gbit bonded Ethernet whereas our cluster
uses 1x1Gbit Ethernet, which means that communication costs are
significantly higher on our cluster. Second, their code was based
on a substantially older version of Fast Downward (from 2009)
Third, they used an older version MPICH. Finally, our implemen-
tations are completely independent so there are likely other im-
plementation differences. For example, our ZHDA* implementa-
tion solves the Trucksb5 instance in 51 seconds on 8 cores, while
Kishimoto et al’s implementation of ZHDA* on § processes on the
Xeon L5410 solved Trucks5 in 91 seconds (p. 228, Table 2).



e DAHDA* had the lowest CO among HDA* variants,
but it had significantly higher search overhead than the
other HDA* variants. DAHDA* significantly outper-
formed AHDA*/base (AHDA*/base failed on Blocks-10-
2 and Gripper8 because poor load balance results in an
excessive concentration of states being sent to some pro-
cess, which resulted in memory exhaustion).

The effect of the number of cores on speedup Figure
5 shows the speedup of the algorithms as the number of
cores increased from 8 to 48. FAZHDA* outperformed con-
sistently outperformed the other methods. The performance
gap between the better methods (FAZHDA*, OZHDA¥*,
DAHDA*) and the baseline ZHDA* increases with the num-
ber of the cores. This is because as the number of cores in-
creases, communications overheads increases with the num-
ber of cores, and our new work distribution methods suc-
cessfully mitigates communications overhead.

The relationship between CO, SO, and speedup Figure
6a shows the relationship between communications over-
head and speedup, and Figure 6b shows the relationship
between search overhead and speedup. The results indicate
negative correlation between communications overhead and
speedup, and a strongly negative correlation between search
overhead and speedup. There was no clear correlation be-
tween communications and search overheads.

Figure 7a and 7b shows the relationship between CO, SO,
and speedup on a single multicore machine (Intel Xeon E5-
2650 2.60 GHz) using 8 cores. Note that although there is no
network communication within a single multicore machine,
transferring a search state to another MPI process incurs
overhead (e.g. manipulating message buffers), and Figure 7a
shows the negative correlation between CO and speedup.

7 Conclusions and Future Work

We investigated new methods for automatically generating
work distribution functions for parallel best-first search, and
evaluated them on domain-independent classical planning.
Our main contributions are: (1) Feature-dependent abstract
feature generation, a new abstract feature generation method
for abstract Zobrist hashing that avoids harmful feature pro-
jection functions by filtering candidates based on the no-
tion of feature fluency. This significantly improves upon the
greedy abstract feature generation method proposed in (Jin-
nai and Fukunaga 2016) as well as all other baseline meth-
ods. (2) Operator-based Zobrist hashing, a new method for
generating Zobrist hash bitstrings that ensure that succes-
sors generated using selected actions are hashed to the same
processor as their parent. (3) DAHDA*, an improvement to
AHDA¥* (Burns et al. 2010) which uses a new, dynamic cri-
terion for determining the abstract graph size according to
the number of atom groups in the problem. (4) this is the
first evaluation of AZHDA* on a cluster.

While fluency-dependent abstract feature generation re-
sulted in the best performance overall, Operator-based Zo-
brist hashing, as well as DAHDA* perform well on some
domains, so there is no clear, dominant work distribution
strategy. Automatic selection among these methods based on

a structural analysis of the problem is an interesting avenue
for future work. AZHDA* and OZHDA* are orthogonal ap-
proaches, since AZHDA* seeks to cause state that share ab-
stract features to be assigned the same hash value, while
OZHDA* seeks to force successor states of some actions to
be assigned to the same processor as the parent. Combining
these approaches is a promising direction for future work.
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Figure 5: Speedup of HDA* variants (average over all in-
stances in Table 1. Results are for 1 node (8 cores), 2 nodes
(16 cores), 4 nodes (32 cores) and 6 nodes (48 cores).
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Figure 6: Relationship between Communications Overhead
(CO), Search Overhead (SO), and Speedup (on 48 cores).
Each letter represents the results of a single method on
a problem instance. F: Fluency-dependent abstract fea-
ture generation (FAZHDA*), O: Operator-based Zobrist
hashing (OZHDA*), G: Greedy abstract feature generation
(GAZHDA¥), D: Dynamic AHDA* (DAHDA*), Z: ZHDA*



Table 1: Performance of HDA* with different work distribution strategies on a 48-core (6-node) cluster. Values shown are mean
of 10 runs (with standard error in parentheses). speedup: Speedup of wall time compared to A*. CO: communication overhead.
SO: search overhead. The average speedups are weighted by the A* runtimes (because speedups on harder problems problems
are more important than speedups on easier problems). The “expanded” column for A* is the number of nodes expanded by A*.
The “applied” column for OZH is the fraction of actions for which OZH modified the Zobrist bitstring so that the successors
generated using the action are assigned to the same process as the parent. The Ggps¢ column for DAHDA* is the abstraction

size limit determined by DAHDA* based on the number of atom groups in the problem.

Instance A* FAZHDA* OZHDA*
time expanded speedup CcO SO speedup CO SO  applied

Blocks10-0 519.42 51781104 | 25.0000.61) 0.76(0.00)  0.05(0.03) | 20.81(0.00) 0.89(0.02) _ 0.33(0.00) __ 0.49
Blocks10-1 44562 43176318 | 27.19(0.71)  0.75(0.00) -0.04(0.03) | 20.35(0.00) 0.90(0.01)  0.34(0.00)  0.49
Blocks10-2 228.16 21609943 | 20.56(1.43) 0.74(0.00)  0.38(0.12) | 16.88(0.00) 0.88(0.02)  0.50(0.00) 0.49
Elevators08-5 182.28 9654685 | 21.96(0.28) 0.66(0.00)  0.37(0.02) | 20.21(0.49) 0.08(0.00)  0.73(0.02) 0.16
Elevators08-6 507.98 18632725 | 46.10(2.00) 0.62(0.00)  0.06(0.04) | 44.04(0.68) 0.41(0.00) -0.04(0.01) 0.12
Gripper8 483.87 50068804 | 29.17(0.10) 0.48(0.00)  0.17(0.00) | 20.48(0.10) 0.82(0.00) 0.17(0.00)  0.50
Logistics00-7-0 136.06 10881373 | 22.64(0.78) 0.63(0.00)  0.41(0.02) | 37.91(0.97) 0.12(0.00) 0.16(0.01)  0.39
Logistics00-8-0 196.78 14716135 | 24.63(0.72) 0.66(0.00)  0.44(0.03) | 45.97(1.79) 0.08(0.00) 0.12(0.01) 0.41
Miconic-10-0 269.79 17488571 | 41.58(0.30) 0.01(0.00) -0.00(0.01) | 21.99(0.18) 0.53(0.00)  0.06(0.00) 0.10
Miconic-10-1 276.13 17882561 | 41.16(0.31) 0.01(0.00)  0.00(0.00) | 22.80(0.30) 0.53(0.00)  0.04(0.01)  0.10
Nomprime5 290.17 3982810 | 20.83(0.15) 0.79(0.00)  0.01(0.00) | 17.850.21) 0.94(0.00) 0.01(0.00)  0.06
Openstacks11-11 181.11 11995225 | 34.17(0.35) 0.41(0.00) -0.13(0.00) | 23.33(0.35) 0.10(0.00)  0.28(0.00) 0.09
Openstacks11-13 134.78 8193065 | 33.59(0.44) 0.41(0.00) -0.01(0.07) | 25.20(0.35) 0.10(0.00)  0.29(0.00) 0.09
Parcprinter11-7 184.27 8639813 | 24.94(0.22) 0.21(0.00)  0.02(0.00) | 28.75(0.62) 0.44(0.00)  0.03(0.00) 0.54
PipesNoTank10 14779 3026313 | 15.89(0.13) 0.97(0.00)  0.01(0.00) | 18.03(0.43) 0.98(0.00) 0.01(0.00)  0.10
PsrSmall49 37490 32622577 | 30.21(0.10) 0.23(0.00)  0.01(0.00) | 20.97(0.67) 0.56(0.00) 0.41(0.03) 027
Scanalyzer(08-6 173.31 9328498 | 29.23(0.75) 0.30(0.00)  0.08(0.00) | 25.79(0.92) 0.66(0.00)  0.03(0.01) 0.05
Sokoban08-15 176.69 21598353 | 23.05(0.71) 0.77(0.00)  0.22(0.00) | 16.71(0.71)  0.93(0.00)  0.23(0.00) 0.39
Trucks5 20822 10158856 | 24.24(0.08) 0.23(0.00)  0.21(0.01) | 29.84(1.00) 0.36(0.00) 0.07(0.02)  0.03
Woodwork11-3 13633 3110344 | 30.17(022) 0.56(0.00)  0.00(0.00) | 21.82(0.16) 0.91(0.00)  0.00(0.00) 0.1
Woodwork11-4 355.18 11999093 | 24.53(0.35) 0.75(0.00)  0.01(0.01) | 21.69(0.12) 0.83(0.00)  0.01(0.00) 0.12
Average 27929 18999384 | 28.14(0.45) 0.52(0.00) 0.11(0.02) | 24.83(0.41) 0.57(0.00) _0.18(0.01) _ 0.68
Total wall time [sec] | 5907.90 381758487 | Time [sec] 204.89(5.59) | Time [sec] 245.55(5.84)
Instance DAHDA* AHDA*/base GAZHDA* ZHDA*

speedup CO SO |Gapst| speedup CcO SO speedup CO SO speedup CcO SO
Blocks10-0 33.69(7.67) 0.28(0.00) -0.06(0.16) 14641 | 18.28(0.25) 0.39(0.00) 0.06(0.01) | 20.00(0.68) 0.99(0.00)  0.15(0.03) | 21.10(1.16)  0.98(0.00)  0.09(0.06)
Blocks10-1 16.18(0.31)  0.29(0.00)  0.79(0.00) 14641 | 10.52(0.11) 0.41(0.00) 0.75(0.02) | 21.22(0.79) 0.99(0.00)  0.11(0.04) | 22.92(0.65) 0.98(0.00) -0.01(0.03)
Blocks10-2 10.28(0.27)  0.27(0.00)  1.16(0.04) 14641 memory exhausted 16.64(0.23)  0.99(0.00)  0.34(0.02) | 16.46(0.18) 0.97(0.00)  0.35(0.02)
Elevators08-5 12.02(0.67)  0.79(0.00)  0.42(0.05) 1500 | 10.67(0.30) 0.88(0.00) 0.34(0.02) | 24.13(1.96) 0.65(0.00)  0.10(0.09) | 22.17(0.25) 0.98(0.00)  0.01(0.01)
Elevators08-6 16.47(0.50) 0.87(0.00)  0.35(0.03) 73125 | 10.66(0.16) 0.87(0.00) 0.48(0.01) | 29.61(0.54) 0.63(0.00) -0.05(0.01) | 24.05(0.77) 0.96(0.00) -0.02(0.02)
Gripper8 24.26(0.95) 0.48(0.00)  0.18(0.00) 39366 memory exhausted 20.53(0.07) 0.82(0.00)  0.17(0.00) | 19.28(0.09) 0.98(0.00)  0.18(0.00)
Logistics00-7-0 23.87(0.75) 0.54(0.00)  0.28(0.01) 2400 | 10.14(1.02) 0.62(0.00) 0.35(0.05) | 21.70(0.30)  0.92(0.00)  0.01(0.01) | 18.53(1.66) 0.98(0.00)  0.13(0.07)
Logistics00-8-0 12.65(0.82) 0.51(0.00)  0.67(0.07) 2400 | 13.59(0.28) 0.58(0.00) 0.34(0.01) | 20.56(0.22) 0.93(0.00)  0.03(0.01) | 16.61(2.06) 0.98(0.00)  0.22(0.11)
Miconic-10-0 32.83(0.11) 0.01(0.00)  0.10(0.00) 1024 | 23.33(0.10) 0.01(0.00)  0.13(0.00) | 22.35(0.48) 0.53(0.00)  0.04(0.01) 9.25(0.66)  0.96(0.00)  0.03(0.01)
Miconic-10-1 34.43(0.10) 0.01(0.00)  0.08(0.00) 1024 | 22.64(0.24) 0.01(0.00) 0.14(0.01) | 22.15(0.38) 0.53(0.00)  0.04(0.01) 9.58(0.63)  0.96(0.00)  0.05(0.01)
Nomprime5 20.91(0.29)  0.79(0.00)  0.00(0.00) 4194304 | 20.12(0.25) 0.43(0.00) 0.28(0.00) | 16.70(0.12) 0.95(0.00)  0.01(0.00) | 16.17(0.21) 0.98(0.00)  0.01(0.00)
Openstacks11-11 | 16.01(0.00) 0.18(0.00)  0.48(0.00) 262144 | 12.34(0.00) 0.24(0.00) 0.59(0.00) | 27.84(0.42) 0.51(0.00) -0.27(0.00) | 25.55(1.09) 0.99(0.00) -0.26(0.00)
Openstacks11-13 | 15.11(0.16) 0.18(0.00)  0.46(0.01) 1048576 | 15.74(0.25) 0.10(0.00) 0.24(0.01) | 30.95(0.87) 0.51(0.00) -0.24(0.01) | 15.26(3.50) 0.98(0.00)  0.27(0.21)
Parcprinter11-7 29.92(0.37)  0.14(0.00)  0.01(0.00) 32768 4.62(0.01)  0.04(0.00) 0.15(0.00) | 22.94(0.68) 0.75(0.00)  0.01(0.00) | 17.20(0.31) 0.98(0.00)  0.03(0.00)
PipesNoTank10 15.24(0.06)  0.99(0.00)  0.00(0.00) 32768 | 18.51(0.21) 0.43(0.00) 0.15(0.00) | 15.01(0.16) 0.98(0.00)  0.00(0.00) | 14.55(0.10) 0.98(0.00)  0.01(0.00)
PsrSmall49 25.54(0.18) 0.13(0.00)  0.41(0.01) 65536 | 19.65(0.11) 0.12(0.00) 0.34(0.00) | 25.13(0.30) 0.69(0.00)  0.01(0.00) | 25.28(0.21) 0.99(0.00)  0.01(0.00)
Scanalyzer08-6 36.04(0.17)  0.03(0.00)  0.06(0.00) 16384 | 15.83(0.69) 0.26(0.00) 0.16(0.01) | 20.36(0.94) 0.77(0.00)  0.04(0.01) | 19.70(0.18)  0.98(0.00)  0.01(0.00)
Sokoban08-15 12.51(0.35) 0.73(0.00)  0.62(0.00) 2097152 1.03(0.01)  0.36(0.00) 0.55(0.00) | 12.16(0.71) 0.98(0.00)  0.31(0.00) 9.64(0.35) 0.98(0.00)  0.21(0.00)
TrucksS 19.97(0.38)  0.07(0.00)  0.45(0.01) 3328 | 14.55(0.04) 0.14(0.00) 0.38(0.00) | 25.78(0.14) 0.37(0.00)  0.03(0.00) 7.86(1.10)  0.99(0.00)  0.21(0.05)
Woodwork11-3 29.84(0.28) 0.23(0.00)  0.26(0.00) 1327104 | 25.10(0.13) 0.16(0.00) 0.42(0.00) | 20.19(0.12) 0.98(0.00)  0.01(0.00) | 19.65(0.21) 0.97(0.00)  0.01(0.00)
‘Woodwork11-4 28.15(0.57) 0.25(0.00)  0.10(0.01) 294912 | 18.42(0.45) 0.19(0.00) 0.30(0.00) | 18.53(0.12) 0.96(0.00)  0.01(0.00) | 19.22(0.14) 0.99(0.00)  0.01(0.00)
Average 22.19(0.65) 0.37(0.00)  0.33(0.02) N/A N/A N/A | 21.64(0.48) 0.78(0.00)  0.04(0.01) | 17.62(0.93) 0.98(0.00)  0.07(0.03)
Total time [sec] Time [sec] 279.79(10.54) Time [sec] N/A | Time [sec] 267.41(7.79) | Time [sec] 338.14(18.66)
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Figure 7: Relationship between Communications Overhead
(CO), Search Overhead (SO), and Speedup (on 8 cores).
Each letter represents the results of a single method on
a problem instance. F: Fluency-dependent abstract fea-
ture generation (FAZHDA*), O: Operator-based Zobrist
hashing (OZHDA¥*), G: Greedy abstract feature generation
(GAZHDA¥*), D: Dynamic AHDA* (DAHDA*), Z: ZHDA*
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